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How to obtain the universal response law in the 
Jonscher screened hopping model for dielectric 
relaxation 
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Institute of Physics, Technical University of Wroclaw, 50-370 Wrodaw. Poland 

Received 13 November 1990 

Abstract. The revised screened hopping model is presented for relaxation in condensed 
matter. It is based on the concept of fractal time. The present model gives the universal 
dielectric mponse in the stretched exponential form as well as in the power law form. 

A review of the experimental evidence relating to a wide range of dielectric materials 
(see, e.g., [l]) shows clearly that the relaxation behaviour departs strongly from the 
‘conventional’ Debye exponential form. It is a striking fact that despite the variety of 
materials used and the experimental techniques employed, the relaxation behaviour is 
very similar. It was found that almost all the data can be represented in terms of two 
types of experimental fitting function: the stretched exponential function (the so-called 
Williams-Watts function) [2]: 

q(t) = exp[ - (t/r)*I O i L u < l  (1) 

f(t) = [ (mpt)“  + ( m , C ) m + ’ ] - ’  (2) 

or the power-type function (the Jonscher function) [3]: 

where z and wp are constants for a given material. 

that the real and imaginary components of the complex susceptibility 

0 < n ,  n? < 1 

The characteristic feature of this universal law of the dielectric response is the fact 

~ ( m )  = I X t )  exp(-iwr) dr = j’ ( - exp( - iwt) dt (3) 

are the same functions of frequency, so their ratio is independent of frequency. The 
physical sense is given by the so-called ‘energy criterion’ [l]. It seems that if a physical 
mechanism that satisfies the energy criterion can be found, this mechanism would lead 
to the universal law of the dielectric response. Such a physical mechanism has been 
proposed by Jonscher [I1 and was based on the concept of ‘screened hopping’, i.e., 
abrupt transitions of dipoles or charges between localized orientations or positions 
followed by a gradual adjustment of the surrounding dipoles or charges. This model has 
the required property of satisfying the energy criterion but does not, however, predict 
the observed universal law. 

There are two features of the polarization process that are common to all materials 
exhibiting the universal law. The first common property is the presence of interactions 

221 0953-8984/91/020221 t 03 $03.500 1991 IOP Publishing Ltd 



222 Letter IO fhe Editor 

arising from the close proximity of atoms and molecules. As a consequence of many- 
body interactions the assemblies of charged particles exhibit the phenomenon of self- 
consistent screening. This leads to the energy criterion, as has been shown by Jonscher 
[4]: that is, due toself-consistent screeningtheratioofenergylost percycle to tbatstored 
at the field peak depends on the screening coefficient only. 

The second feature common to all solid dielectrics is the discontinuous nature of the 
dipolar or charge-carrier transitions between their preferred ‘stationary’ orientations or 
positions. The interactive nature of the system implies that any sudden individual 
transition of a charge or a dipole brings about a series of ‘chain’ responses stretching 
both in time and in space beyond the time and position of the initiating transition. 
This property is equivalent to the existence of two distinctly separate time scales-the 
practically instantaneous transition time for the individual hopping movements and the 
relatively much longer screening adjustment time. It turns out that the second of these 
features is required in order to obtain the universal law of the dielectric response. 

Let us consider a system consisting of a discrete series of relaxing modes (dipoles, 
atoms. ions) N = 1,2.3,  . . . . The relaxation can be imagined as a quasi-stationary 
process: the ith mode after the waiting time takes the step from the kth to the (k + 1)th 
stationary step and then stays there until smoothing of the fluctuation induced by the 
perturbation of the kth relaxation step has occurred. The time dependence of the 
polarization resulting from this sequence of events can be considered in two steps: at 
first there is a constant polarization in a waiting time tw,, and, next, after a very ‘rapid‘ 
change at the moment of the instantaneous transition of the ith mode between the 
localized sites, a ‘slow’ change in a screening adjustment time fa.!. The relaxation of the 
ith mode takes an experimental time equal to I, = fa,i t tw,? In a system of N relaxing 
modes we assume the ordering of times: t I  > f2 > . . . > ti > . . . > tN, choosing the first 
mode with the longest experimental time, and also that I,+] = fa,i. 

Let us start with a straight line, namely the time axis, then cut out shorter and 
shorter constant-polarization gaps Is,,. The set yielded by infinite interpolation and 
extrapolation is self-similar. This procedure is analogous to a construction known in 
mathematics as a Cantor set IS]. Since a point on the time axis marks an ‘event’, such a 
Cantor set is a fractal sequence of events. From the physical point of view, it is just a set 
ofrandomlydistributed transition times for agivensystemofNrelaxingmodes. Inorder 
to find the dimensionofan inhomogeneousCantorset (a random weighted construction) 
we use the following construction [6,7]. Let the longest relaxation time be 

w h e r e ~ ~ , ~ / t , , ]  =pl/ql isapositiverationalnumber, ( p l  + q l )  > Landrisatimescaling 
factor. Then 

where ta,l/ll = pl/(pl + q l )  is the length of the part that remains from the normalized 
time interval [0, 11 after the first construction stage, and tw.l/fl = ql/(pI t ql )  is the 
length of the part cut out. Hence we get 

1 - P ! / ( P l  +Sl)=ql / (PI  +41). (6)  
After the second construction stage, using the assumption t2  = fa , ]  and dividing this time 
interval into ( p z  + qz)  > 2 pieces, we have the following relation: 

11 = L,I + L * , I  = (PI + q l ) r  

1 - fa,lifl = tW.t/f, 

(4) 

(5) 

1 -PIP2/(PI + 41)(Pz + s2) = q l l ( P l  + 41) + PI42/(PI  + q l ) ( P 2  + q2) (7) 
where the right hand side denotes the part cut out of [O, 11 after the two construction 
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steps. Denoting the dimension of the remainder set obtained after N steps by D,, we 
have 

N N 
D N  = l o g p ; / E  log(pi + s i )  D = lim D N  

i= I i = 1  N 

which is a fraction between 0 and 1. 
The only observed time is the experimental time 1 and from (8) it follows that 

t , / r  = ( t / r )D.  (9) 
By taking account of an intermittent process instead of a continuous one, one can write 
the relaxation equation in terms of the intrinsic time t,. Generally, the decay of the 
polarization can follow the fdh-order rate equation * 

The time dependence of the polarization fork = 1 has the form: 

sotherelaxationfunctiong,(t) = exp[ - C ( I / ~ ) ~ ]  has,fork # 1,thestretchedexponential 
form of (1): 

dP/dt, = - (C/r)P*(t ,) .  (10) 

P(t) = Po exp[ - c ( ~ / r ) ~ ]  O < D < 1  (11) 

P(t) = Po[l + (k - l)CP~-'(t/r)D]li(l-*l (12) 

Expression (13) brings out the physically significant feature that the time domain 
response can be made up of two sequential processes (2). The first obeys the relation 

for short times and corresponds to the high-frequency part of the frequency response, 
while the second obeys the relation 

for longer times. 
In conclusion, the revised screened hopping model, generally applicable to a wide 

rangeof physical andchemical conditions, has not only the requiredproperty of satisfying 
the energy criterion but also leads to the universal dielectric response law in both 
empirically observed forms (1) and ( 2 ) .  

The author gratefully acknowledges Professor A K Jonscher for many stimulating 
discussions. 

f ( t )  ( t / r ) -" n = l - D  O < n < l  (14) 

f ( t )  (t/r)-"-' m = D / ( k - l )  O < m < l  (15) 
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